Problem: Backpack II
思路
和上一个题目的思路类似,看每一个 item 要还是不要。
public class Solution {
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
public int backPackII(int m, int[] A, int V[]) {
// write your code here
if (m == 0 || A == null || A.length == 0) return 0;
if (V.length != A.length) return 0;
int n = V.length;
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (i >= A[j - 1]) {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - A[j - 1]][j - 1] + V[j - 1]);
} else {
dp[i][j] = dp[i][j - 1];
}
}
}
return dp[m][n];
}
}
优化:滚动数组
public class Solution {
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
public int backPackII(int m, int[] A, int V[]) {
// write your code here
if (m == 0 || A == null || A.length == 0) return 0;
if (V.length != A.length) return 0;
int n = V.length;
int[][] dp = new int[m + 1][2];
for (int j = 1; j <= n; j++) {
for (int i = 1; i <= m; i++) {
if (i >= A[j - 1]) {
dp[i][j % 2] = Math.max(dp[i][(j - 1) % 2], dp[i - A[j - 1]][(j - 1) % 2] + V[j - 1]);
} else {
dp[i][j % 2] = dp[i][(j - 1) % 2];
}
}
}
return Math.max(dp[m][0], dp[m][1]);
}
}
另一个解法:一维数组就可以搞定
public class Solution {
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
public int backPackII(int m, int[] A, int V[]) {
// write your code here
if (m == 0 || A == null || A.length == 0) return 0;
if (V.length != A.length) return 0;
int n = V.length;
int[] dp = new int[m + 1];
for (int j = 0; j < n; j++) {
for (int i = m; i >= A[j]; i--) {
if (dp[i] < dp[i - A[j]] + V[j]) {
dp[i] = dp[i - A[j]] + V[j];
}
}
}
return dp[m];
}
}
Last updated