System Design
  • Introduction
  • Glossary of System Design
    • System Design Basics
    • Key Characteristics of Distributed Systems
    • Scalability - Harvard lecture
      • Scalability for Dummies - Part 1: Clones
      • Scalability for Dummies - Part 2: Database
      • Scalability for Dummies - Part 3: Cache
      • Scalability for Dummies - Part 4: Asynchronism
    • Trade-off
      • CAP Theorem
      • Performance vs scalability
      • Latency vs throughput
      • Availability vs consistency
    • Load Balancing
      • Load balancer
    • Proxies
      • Reverse proxy
    • Cache
      • Caching
    • Asynchronism
    • Processing guarantee in Kafka
    • Database
      • Relational database management system (RDBMS)
      • Redundancy and Replication
      • Data Partitioning
      • Indexes
      • NoSQL
      • SQL vs. NoSQL
      • Consistent Hashing
    • Application layer
    • DNS
    • CDN
    • Communication
      • Long-Polling vs WebSockets vs Server-Sent Events
    • Security
    • Lambda Architecture
  • OOD design
    • Concepts
      • Object-Oriented Basics
      • OO Analysis and Design
      • What is UML?
      • Use Case Diagrams
    • Design a parking lot
  • System Design Cases
    • Overview
    • Design a system that scales to millions of users on AWS
    • Designing a URL Shortening service like TinyURL
      • Design Unique ID Generator
      • Designing Pastebin
      • Design Pastebin.com (or Bit.ly)
    • Design notification system (scott)
      • Designing notification service
    • Designing Chat System
      • Designing Slack
      • Designing Facebook Messenger
    • Design Top K System
    • Designing Instagram
    • Design a newsfeed system
      • Designing Facebook’s Newsfeed
      • Design the data structures for a social network
    • Designing Twitter
      • Design the Twitter timeline and search
      • Designing Twitter Search
    • Design Youtube - Scott
      • Design live commenting
      • Designing Youtube or Netflix
    • Designing a Web Crawler
      • Designing a distributed job scheduler
      • Designing a Web Crawler/Archive (scott)
      • Design a web crawler
    • Designing Dropbox
    • Design Google Doc
    • Design Metrics Aggregation System
      • Design Ads Logging System
    • Design Instacart
    • Design a payment system
      • Airbnb - Avoiding Double Payments in a Distributed Payments System
    • Design Distributed Message Queue
      • Cherami: Uber Engineering’s Durable and Scalable Task Queue in Go
    • Design Distributed Cache
      • Design a key-value cache to save the results of the most recent web server queries
    • Design a scalable file distribution system
    • Design Amazon's sales ranking by category feature
    • Design Mint.com
    • Design Autocomplete System
      • Designing Typeahead Suggestion
    • Designing an API Rate Limiter
      • Designing Rate Limiter
    • Design Google Map
      • Designing Yelp or Nearby Friends
      • Designing Uber backend
    • Designing Ticketmaster
      • Design 12306 - Scott
    • Design AirBnB or a Hotel Booking System
  • Paper Reading
    • MapReduce
  • Other Questions
    • What happened after you input the url in the browser?
Powered by GitBook
On this page

Was this helpful?

  1. Glossary of System Design
  2. Database

Redundancy and Replication

PreviousRelational database management system (RDBMS)NextData Partitioning

Last updated 3 years ago

Was this helpful?

Redundancy is the duplication of critical components or functions of a system with the intention of increasing the reliability of the system, usually in the form of a backup or fail-safe, or to improve actual system performance. For example, if there is only one copy of a file stored on a single server, then losing that server means losing the file. Since losing data is seldom a good thing, we can create duplicate or redundant copies of the file to solve this problem.

Redundancy plays a key role in removing the single points of failure in the system and provides backups if needed in a crisis. For example, if we have two instances of a service running in production and one fails, the system can failover to the other one.

redundency -> remove single point failure;

Replication is widely used in many database management systems (DBMS), usually with a master-slave relationship between the original and the copies. The master gets all the updates, which then ripple through to the slaves. Each slave outputs a message stating that it has received the update successfully, thus allowing the sending of subsequent updates.

[Replication](https://en.wikipedia.org/wiki/Replication_(computing) means sharing information to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, , or accessibility.

fault-tolerance